
Self-similarity of quasilattices in two dimensions. III. Inflation by a non-unit PV number

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 1859

(http://iopscience.iop.org/0305-4470/22/11/024)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 06:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 22 (1989) 1859-1869. Printed in the UK 

Self-similarity of quasilattices in two dimensions: 111. Inflation 
by a non-unit PV number 

Komajiro Niizeki 
Department of Physics, Tohoku University, Sendai, Japan 

Received 1 August 1988 

Abstract. It is shown that every n-gonal quasilattice in two dimensions has self-similarity 
with a complex self-similarity ratio which is equal to a non-unit PV number in the 
n-cyclotomic field. In this self-similarity, the original quasilattice can be inflated to a 
number of different quasilattices which are locally isomorphous to each other. The number 
is equal to the algebraic norm of the relevant PV number in the n-cyclotomic field. Several 
examples are presented for the cases of octagonal, decagonal and dodecagonal quasilattices. 
The difference between the present self-similarity and that associated with a PV unit is 
clarified. 

1. Introduction 

We have shown in previous papers (Niizeki 1989a, b, hereafter referred to as I and 11, 
respectively) than, for even n (>8), an n-gonal quasilattice in two dimensions (ZD) 
has self-similarity with a complex self-similarity ratio being equal to a PV unit in the 
n-cyclotomic field Q(l) ,  5 = 5, = exp(2ri /n) ;  a PV unit T is an algebraic integer 
satisfying (i)  T-’ is also an algebraic integer, (ii) 171 > 1 and (iii) I T ’ \  < 1 with T’ being 
any conjugate but 5 (the complex conjugate) of T in Q(5). The lattice points of the 
n-gonal quasilattice are represented by points (complex numbers) in the complex plane 
C and T acts multiplicatively onto C. 

All the PV units in Q(5,) form a commutable semigroup which is generated by a 
finite number of the fundamental PV units. The number of the fundamental PV units 
is one if n =8,  10, or 12; the respective fundamental PV unit is 1 + a ,  ( l + f i ) / 2  or 
1 + lI2. The number of the fundamental units is two or more if n 2 14. 

On the other hand, it is reported that an octagonal quasilattice has an additional 
self-similarity with ratio 2 + 4  (Watanabe er al 1987), which is a PV number in Q ( l s )  
but not a unit; a PV number is an algebraic integer satisfying the conditions ( i i )  and 
(iii) above. An n-gonal quasiperiodic pattern constructed with the Pleasants method 
has also self-similarity with a ratio being equal to a non-unit PV number (Pleasants 
1984). In this paper, we will show that every n-gonal quasilattice is, in fact, self-similar 
with respect to inflations with ratios given not only by a PV unit but also a non-unit 
PV number. The semigroup formed by all the PV numbers in Q ( l n )  has an infinite 
number of generators, so that an n-gonal quasilattice has an infinite variety of self- 
similarities. 

A quasilattice is a structural model of a quasicrystal. Self-similarity of the quasilat- 
tice may have a profound effect on the physical properties of the relevant quasicrystal. 
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Therefore, it is important to investigate the difference (if any) in self-similarity between 
the case of a PV unit as investigated in I and 11 and the case of a non-unit PV number 
to be investigated in this paper. 

In § 2, we introduce an n-gonal lattice in a higher dimension and present a systematic 
method of dividing the n-gonal lattice into equivalent sublattices. Most of this section 
will be a resum6 of some results presented in I and 11. In § 3, we show self-similarity 
of an n-gonal quasilattice with respect to a non-unit PV number. In § 4, we apply the 
theory in § 3 to n-gonal quasilattices with n s 12. In § 5 ,  we contrast the feature of 
self-similarity presented in this paper with that presented in I and 11. We discuss, also, 
a related subject. 

2. An n-gonal lattice and its division into several equivalent sublattices 

Let n ( n  3 8) be an even integer and let r be the rotation of the plane (the two- 
dimensional Euclidean space) E2 by 27r/ n with respect to the origin. Then, the cyclic 
group C, generated by r is a point group with order n. E2 is identified with C, the 
complex plane, E 2 =  C, and, tten, r is equivalent to a multiplication of a complex 
number I =  onto C ;  C, = C, = {1,& . . . ,l"-'}. 5 is an algebraic integer which 
satisfies the equation P , ( x )  = 0 with P , ( x )  being the n-cyclotomic polynomial. The 
order of P , ( x )  is given by 4 ( n )  with 4 being the Eulerian function in number theory. 
4(  n) is an even integer and we put m = 4(  n)/2. 1 , l ,  . . . , 12"-' are linearly independent 
over 2. 6 has 2m conjugates including itself, 5, l', . . . , 5(2"-1). We can assume that 
l(m+k) is the complex conjugate of l (k )  for k = 0, 1, . . . , m - 1. 

Let a k  = (lk, (L ' )~ ,  . . . , ( J ( " - ' ) ) ~ ) ,  k = 0,1, .  . . ,2m - 1, be m-dimensional complex 
vectors. Then, they are linearly independent over the real field. They form a set of 
basis vectors of a 2m-dimensional Euclidean space Ezm = C" = CO CO. . . 0 C. A 
2m-dimensional lattice L generated by the 2m basis vectors, L =  
{noao+ nlal +. . .+ n 2 m - i f 2 m - l  I n k  E z}, is an n-gonal lattice; L is invariant against a 
point symmetry group D, which is isomorphous to the dihedral group D,. Each 
component in C" in an invariant subspace against 6,. 

Let 7~ be the projector which projects E2,  = C"' onto the first subspace C in C". 
Then, T(ak)  = lk, k = 0, 1, . . . ,2m - 1, and, accordingly, 7r is a bijection (a  one-to-one 
mapping) from L Onto z(5) = {no+ n,l+. . . + n2m-l{2m-11 f l k  E Z } ,  which is the ring 
of all the algebraic integers in Q(l) .  ~ ( 6 , )  =e,+uC, =D,, where U is the complex 
conjugate operation, i.e. the reflection with respect to the real axis of C. 

In this paper we assume for simplicity that the class number of Q ( 5 )  is one, so 
that every ideal of Z ( l )  is generated by one generator. This assumption is satisfied if 
n s 44, so that all the important cases are included. 

(the complex 
conjugate of J )  is identical to J. We shall refer to a generator of a self-conjugate ideal 
as a D,-conjugate number. A necessary and sufficient condition for an algebraic integer 
p to be D,-conjugate is that p = p l k  for some integer k. 

Let J be a self-conjugate ideal of Z ( 0 .  Then K E n - ' ( J )  is a superlattice of L 
and, moreover, is invariant against D,. K is called by this property as a D,-superlattice 
of L. The number of the lattice points included in a unit cell of K is given by q = NJ, 
the norm of the ideal J. Let p be a generator of J, i.e. J = FZ(J) .  Then, NJ = N ( p )  = 

, where p', p", . . . , p(2m-1)  are the conjugates of p in Q(l) .  Note that CLCL' * * I.L 
L is transformed to K by a linear transformation C; which is represented by a diagonal 

Let J be an ideal of Z ( l ) .  Then J is called self-conjugate if 

(2" -1)  
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(" -1 )  ) diag acting on C" = E*,. Therefore, we may write complex matrix (p,  p',  . . . , p 
@ = v- ' (p* ) ,  where p* is a linear transformation defined by a multiplication of p onto 
C. 

A necessary and sufficient condition for p to be a unit in Q ( 5 )  is given by 
pZ(6 )  = Z ( 5 )  or, equivalently, N ( p )  = 1. If p is not a unit, N ( p )  > 1. 

Two algebraic integers p and v are called associates of each other if they generate 
an identical ideal, i.e. pZ(5) = v Z ( 5 ) .  A necessary and sufficient condition for p and 
v to be associates of each other is that p = E V  with E being a unit in Q ( 5 ) .  

Let p be a generator of a self-conjugate ideal J of Z ( 5 )  and let E be a PV unit in 
Q ( 5 ) .  Then ~~p is a PV number for a sufficiently large integer k. Thus, every ideal 
has a PV generator, i.e. a generator which is a PV number. Let T be one of the PV 
generators of J with the smallest magnitude. Then, any other PV generator of J is 
written as ET with E being a unit such that I E (  3 1. Note that I E T ~  = 171 only when E = 1, 
5,. . . or { " - I .  We shall call T (and also l k 7  for any k) as a fundamental PV generator 
of J. One of the fundamental PV generators of a self-conjugate generator satisfies T = 
(real) or 7 = ?5. 

Let J be a self-conjugate ideal of Z (  5 ) .  Then, L is divided into q (= N J )  sublattices 
which are identical to K = v- ' (  J )  except translations. Each sublattice is labelled by 
an element in A = Z( 5)/ J, the residue class ring; 

L =  U K ( A )  
A E A  

where K ( A )  denotes the sublattice labelled by A ( K ( 0 )  = K ) .  By definition, A can be 
embedded in Z ( l ) ,  i.e. hc Z ( 5 ) .  Then, K ( A )  is given with I ( h ) =  v - ' ( A )  E L as 
I ( A )  + K = {[ (A)  + x Ix E K } .  The q sublattices are transformed (permuted) among 
themselves by a symmetry operation in 6,. 

3. Self-similarity of an n-gooal quasilattice 

3.1. The case of a 'Bravais-type' quasilattice 

We divide C" into the internal and the external spaces as C" = C O  Cm-' ,  respectively, 
where C, the external space, is the first component in C", i.e. C = n( C") ,  and C"-' 
is the orthogonal complement of C in C". Both the spaces are invariant subspaces 
of C" against 6,. C is irreducible but Cm-' is reducible unless m = 2 .  We shall 
denote the projection of C" onto C"-' by T' .  The restriction of 6 ,  onto Cm-' is a 
point group D', (=d(6,))  which is isomorphous to D,. 

We introduce here a window W which is a convex polygon (or polytope if m > 2) 
or a star-like polygon (or polytope) in the internal space C"-' and is invariant against 
D',. Then, we can construct with the projection method a 'Bravais-type' n-gonal 
quasilattice whose macroscopic point symmetry is equal to D, ; 

(2) 

where & is an arbitrary vector, a so-called phase vector, in C"-'. Two quasilattices 
with a common window but with different phase vectors belong to the same local- 
isomorphism class (LI class). 

Let J be a self-conjugate ideal of Z (  5) and assume that L is divided as (1) in terms 
of a D,-superlattice K = v - ' ( J ) .  Then, L(&,  W) in (2) is divided into equivalent 

Lo(&, W )  = { d z )  I z  E Land v' (z)  E & + W }  
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sublattices as 

Lg’(4,  W ) = { x ( z ) l z ~ K ( A )  and T’ (z )E#+ W } .  ( 3 6 )  

In order to avoid a complication, we shall confine our argument hereafter to the 
case of m = 2; an extension of the result to the case m 3 2 is straightforward. Then, 
the internal space as well as the external space is two-dimensional and we shall denote 
the former by C‘ so that it is distinguished from the latter. 

The condition z E K ( A )  ( = I ( A )  + K )  is equivalent to x ( z )  E A + J .  Therefore, (36) 
can be rewritten as 

Lg’ (4 ,  W ) = { v l v ~ A + J a n d  v ‘ E ~ +  W }  ( 3 c )  

where v’ denotes a conjugate but C of v in Q ( { ) .  
Let T be a PV generator of J, J = T Z ( ~ ) .  Then, T acts on C as an expansive linear 

transformation and its conjugate T‘ on C’ as a contractive one. It follows that T’ W c W 
provided that W is sufficiently close to a disc in C’. Even if it does not hold, we can 
take another PV generator of J so that it does hold. Then, we obtain L g ’ ( 4 ,  W )  2 
Lg’(4, T’ W ) .  On the other hand, using the equivalence 

V E A + J ~ V = A + T K  and K E Z ( ~ )  

we obtain that 

Lg’(4,  T’ W )  = { A  + TV I V E  Z ( l )  and A ’ +  T ’ V ’ E  4 + T ’ W }  

= A + T L Q ( 4 A ,  w, with dA = ( 4  - A ’)/ 7’. 

It follows that L g ’ ( 4 ,  W )  has a sublattice (subset) being similar to L a ( 4 A ,  W ) ,  which 
belongs to the same LI class as the original quasilattice to which LQ(4,  W )  belongs. 
Consequently, we can conclude that Lo( 4, W )  has self-similarity associated with a 
non-unit PV number. However, the quasilattice is not uniquely inflated in this case 
but can be inflated into q different but equivalent quasilattices, which is markedly 
different from the case of self-similarity associated with a PV unit as discussed in I. 
This is because i=  T - ’ ( T . )  leaves L invariant if T is a PV unit but changes L to a 
superlattice if T is a non-unit PV number. 

We shall summarise the inflation rule of the self-similarity discussed above: (i)  take 
a self-conjugate ideal J c Z (  5) and divide the n-gonal quasilattice into equivalent 
sublattices labelled by the elements in A = Z ( l ) /  J ;  (ii) only one of the q (= N J )  
sublattices is retained; and (iii) take a PV generator T of J satisfying T’ W c W and 
narrow the window W used in selecting acceptable lattice points to T’ W. 

If T is not real, T satisfies T = 7l and arg T = x /  n, so that the directions of the bonds 
in the inflated quasilattices are rotated by x / n  from those in the original quasilattice. 

3.2. The case of a ‘non-Bravais-type’ quasilattice 

We shall consider the case of a ‘non-Bravais-type’ n-gonal quasilattice, which is given, 
as shown in 11, by 
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where { W} = { W(A)( A E A} is the set of windows assigned to the sublattices K(A). 
We assume that W(0) is the largest window among the W(A). Obviously, LQ(4,  { W}) 2 
Lg’(4, W(0)). Let T be a PV generator of J. Then 

L‘O’ (4,  W(O))={Y~VETZ(~) and v ‘ ~ 4 - t  W(O)} 

= T { v ( v E Z ( & )  and T ‘ V ’ E C # I +  W(O)} 

= ~ L Q ( (  T’)-’t$,  (T’ ) - ’  w(0)). 

Since T’ acts on C’ as a contractive linear transformation, we may assume that 
.r’W(A)c W(0) and, hence, W ( A ) c  (T’ ) - ’  W(0) for all A E A. Then we obtain 

LQ((T’)-l+,(T’)-’W(o)) = ~ Q ( ( T ’ ) - % { w )  

LQ(A { W ) )  = TLQ(b”,  { W). 
and, consequently, 

This proves self-similarity of LQ(4,  { W}) with the ratio being equal to a PV number 
in J. 

In this self-similarity, the sublattice Lg’(4,  W ( 0 ) )  of LQ(4,  { W}) has been chosen 
uniquely from the assumption that W(0) is the largest window. However, it can be 
shown that there are q different ways of choosing from L Q ( ( 7 ) - ’ 4 ,  (T ’ ) - ’  W(0)) a 
sublattice which is locally isomorphous to LQ(+, { W}). 

In the above discussion, we have tacitly assumed that the PV number related to 
self-similarity of LQ(4,  { W}) belongs to the same ideal J used in constructing 
LQ(q5, { W}). However, we can choose a PV number p belonging to a different ideal 
J’ .  Self-similarity in this general case can be proved in a similar way. The case where 
J n J ’  = {0} is of a particular interest because p induces, then, a permutation among 
different sublattices in (4a).  We shall not, however, discuss this subject any further 
now but leave it to a study in the next section. 

4. Examples 

In this section, we shall apply the theory developed in 0 3 to the cases of n = 8, 10 and 
12, in which cases m = 2 .  We shall discuss each case separately. Several results in I1 
will be used. 

4.1. The case of an octagonal quasilattice ( n  = 8) 

In this case, l = e x p ( . i r i / 4 ) = ( l + i ) / a  and 5 ’ =  -5. The fundamental PV unit is 
r0 = 1 + f i  (= 1 + 5 + C-’), the silver ratio. The non-trivial ideal with the smallest norm 
is generated by r = 1 + C with N ( r )  = 2. r is a PV number; 171 = ( 2 + f i ) ” *  (=1.8478), 
17’1 = 11 - 51 = (2 -&‘)I/* (=0.7654) and arg T = ~ / 8 .  K = .ir-’(J) with J = T Z ( ~ )  is a 
face-centred hypercubic lattice in four dimensions. 

The Voronoi polytope of the lattice point at the origin of L is projected by 7’ to 
a regular octagon whose vertices are at lk7/a, k = 0, 1, . . . , 7  in C’ as given in figure 
l ( a ) .  If we take this polygon as the window W, the resulting octagonal quasilattice 
yields a tiling with square tiles and rhombic tiles. This quasilattice is inflated to two 
equivalent quasilattices with the complex self-similarity ratio 1 + 5 as shown in figure 
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I 

( a )  ( b )  

Figure 1. ( a )  The regular octagon represents the window used to construct an octagonal 
quasilattice. Subwindows partitioned by broken lines are associated with different types 
of the vertices of the quasilattice; the coordination number ranges from 3 to 8 and an 
outermost (or the central) subwindow is associated with 3-vertices (or with 8-vertices). 
The inner regular octagon (full lines) represents the narrowed window resulting in an 
inflated octagonal quasilattice with the ratio 1 +d. It cuts right in two a subwindow 
associated with 5-vertices. It coincides with a subwindow associated with 8-coordinated 
vertices with respect to the ‘second neighbour’ coordination. (b)  The full lines represent 
a window assigned to one of the four sublattices of a ‘non-Bravais-type’ dodecagonal 
quasilattice; other three windows are given by rotating it through multiples of n / 6 .  The 
broken lines represent a window to be used on inflating the quasilattice with the ratio 
1 +& The axes of the internal space are represented by chain lines. 

Figure 2. An octagonal quasilattice (full lines) and its two equivalent inflations (broken 
lines) with the complex self-similarity ratio 1 + 5. The directions of the bonds in the inflated 
quasilattices are rotated through n/8 = arg(1 + 4‘) from those in the original quasilattice. 



Self-similarity of quasilattices in two dimensions: ZII 1865 

2. The two inflations have no common vertices because they are derived from the two 
different sublattices of L. 

If the inflation is performed twice as given in figure 3, the resulting quasilattice is 
scaled by 2+a from the original one because (1 + l)* = ( 2 + f i ) 5 .  Self-similarity of 
an octagonal quasilattice with this ratio was reported by Watanabe et a1 (1987). Their 
octagonal quasilattice is, however, different from the one in figure 3; theirs is obtained 
by the deflation method. Unfortunately, the rhombic tile cannot be uniquely deflated 
by their deflation procedure. Therefore, it is not warranted that the diffraction pattern 
of their quasilattice does not include a diffuse scattering. 

Figure 3. An octagonal quasilattice (full lines) and its inflation with the ratio 2 + & (broken 
lines). The decoration of a square tile in the inflated lattice (tiling) is not unique contrary 
to the octagonal quasilattice obtained by Watanabe et a /  (1987). 

4.2. The case of a decagonal quasilattice (n = 10) 

In this case, 5 = exp( 4 5 )  and 5' = 5'. The fundamental PV unit is T~ = (1 + 8 ) / 2  
(=l+l-'),  the golden ratio. The non-trivial ideal with the smallest norm in Z(l)  is 
given by J = ( l + l ) Z ( l )  with N J = 5  and h = Z ( ~ ) / J = Z s = { 2 , 1 , 0 , - l , - 2 } .  The 
fundamental PV generator of J is given by T = T ~ (  1 + 5);  IT^= 2~~ cos( . r r / l O )  (=3.078), 
17'1 = 21~b1 s i n ( 3 ~ / 1 0 )  (=0.7265) and arg T = r / lO.  Therefore, a decagonal quasilattice 
may be inflated to five equivalent sublattices with the complex ratio 7. 

There exist several kinds of decagonal quasilattices but we consider here only the 
anti-Penrose lattice, which is a 'non-Bravais-type' quasilattice given by (4) with W(O), 
W ( i 1 )  and W(*2)  being equal to a decagon, truncated pentagons and small pentagons, 
respectively (Pavlovitch and Klkman (1987), see also 11). We show in figure 4 the 
anti-Penrose lattice (tiling) and one of its five inflations with T. Note that the lattice 
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Figure 4. The anti-Penrose-type decagonal quasilattice (full lines) and its inflation with 
the ratio ( 1  + l ) (  1 + 4 ) / 2  (broken lines). 

Figure 5. A dodecagonal quasilattice (thin lines) and its inflation with the ratio 1 + A  
(bold lines). The lattice points of the inflated quasilattice come from all the four sublattices 
into which the original quasilattice is divided. 
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points in the inflated quasilattice are derived only from the sublattice Lg’(4 ,  W ( 0 ) )  
in the original quasilattice. 

4.3. The case of a dodecagonal quasilattice (n = 12) 

In this case, 5 = exp( 4 6 )  (= (&+i ) /2 )  and 5 ’=  -5. The fundamental PV unit is given 
by T~ = 1 + 5 = T~ exp( Ti/ 12) with T~ = 2 cos( T/ 12) = (&+ l ) / d  (= 1.932) being the 
platinum ratio. The non-trivial ideals with the smallest and the second-smallest norms 
in Z (  5 )  are Jl = ( 1  + i3 )Z(  5 )  and J2 = ( 5  + 5-’)Z( 5 )  (=dF Z (  L)), respectively, where 
N J , = 4  and N J 2 = 9 .  The fundamental PV generators of J1 and J2 are given by 

= 1 + 8 ( = 1 + 5 + 5-l) and T~ = & T ~ ,  respectively. Thus, a dodecagonal quasilattice 
may be inflated to four (or nine) equivalent quasilattices with the ratio (or T~). Note 
that J1 n J2 = (0). 

We present here only one example, which is shown in figure 5. The dodecagonal 
quasilattice in figure 5 is a ‘non-Bravais-type’ quasilattice (Niizeki 1988) obtained from 
a dodecagonal lattice (the hyperhexagonal lattice) L in four dimensions by assigning 
windows of trigonal hexagons (see figure l ( b ) )  with different orientations to four of 
the nine sublattices into which L is divided with K 2  = r - ’ ( J 2 )  (the other five sublattices 
are discarded). The inflation in figure 5 is performed with PV number T’. Therefore, 
the quasilattice is divided into four sublattices by J ,  and only one of the four is retained 
in the first step of the inflation procedure. Then, each window is multiplied by T: 
(= 1 - &) and, consequently, is narrowed as presented in figure 1 ( b ) ;  this is because 
the four sublattices with non-empty windows are left invariant by the linear transforma- 
tion F1 = T - ’ ( T ~ . )  (on account of ~ / I ( T ’ )  = 1 +i+i-’= 1; for J/ see 11). 

5. Discussions 

We shall argue the difference between the self-similarity investigated in this paper and 
that in I and 11. We begin with investigating the feature of the self-similarity associated 
with a PV unit. On the inflation of the Penrose lattice with the ratio ( 1  + 8 ) / 2 ,  whether 
a lattice point is to be retained or discarded is determined uniquely by the type of the 
relevant vertex (de Bruijn 1981). The same is true for the case of the inflation of the 
dodecagonal quasilattice in figure 5 with the ratio 2+& (Niizeki 1988). This is not 
the case for the inflation of the octagonal quasilattice with the PV unit 1 +fi as given 
in figure 6 because a half of the five-coordinated vertices (5-vertices) are retained and 
the other half are discarded as explained in figure l (a) .  Fortunately, the two groups 
of 5-vertices can be distinguished if we closely observe figure 6: (i)  5-vertices appear 
in pairs associated with bonds shared by pairs of square tiles, (ii) one of the 5-vertices 
in a pair is retained on the inflation but the other is discarded; (iii) a 5-vertex to be 
retained is located at the centre of a regular octagon formed by the ‘second neighbours’ 
but the one to be discarded is not. In fact, the narrowed window coincides with the 
subwindow corresponding to 8-vertices with respect to the ‘second neighbour’ coordina- 
tions (see figure l ( a ) ) ,  so that observation (iii) applies as a rule of the inflation for all 
the vertices independently of their coordination numbers. Incidentally, we remark that 
the central subwindow is exactly equal to ( 1  +a)-’ times the original window, so that 
a double inflation of the octagonal quasilattice with 1 +a is obtained by retaining 
their 8-vertices only. 
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Figure 6. An octagonal quasilattice (full lines) and its inflation (broken lines) with a PV 

unit 1 + d .  The vertices to be retained on the inflation are determined by their local 
configurations. 

It is a general feature of the inflation with a PV unit that a local configuration of 
a lattice point determines uniquely whether it is to be retained or not on the inflation. 
This is derived by that the inflation rule is formulated in the projection method solely 
by narrowing the window(s). On the contrary, whether a lattice point is to be retained 
or not on the inflation with a non-unit PV number is not determined only by its local 
configuration on account of the non-uniqueness of the inflation. Therefore, this 
self-similarity is of less physical importance than the one in the case of a PV unit is. 
This is supported also by the fact that self-similarity associated with a non-unit PV 

number is not clearly observed in the diffraction pattern, in contrast to the case of a 
PV unit. In view of the important difference between the two types of self-similarities, 
we shall distinguish between them by calling the self-similarity associated with a PV 

unit as the type I self-similarity and that with a non-unit PV number as type 11. 
Let 7 E Z(C). Then the external space and the internal one are invariant subspaces 

of Ezm = C" against the linear transformation i represented by the diagonal matrix 
(7, T', . . . , , The condition for 7 to be a PV number is equivalent to i acting 
on the external space as an expansive similarity transformation but on the internal 
one as a contractive linear transformation. Moreover, i transforms the basis vectors 
of the n-gonal lattice L among themselves as +(ao,  a , ,  . . . , u ( ~ , - ~ ) )  = 
(ao,  a , ,  . . . , q2,, ,- , , )M with M being a non-singular integer matrix. It follows that 
det M = N ( 7 ) .  If 7 is a unit then N ( T )  = 1 and M is unimodular. Otherwise, q = N ( 7 )  
is a larger positive integer than 1. Thus, ? leaves L invariant if T is a unit but changes 
it into K = ~ - ' ( ~ 2 ( 5 ) ) ,  i.e. one of the q equivalent sublattices of L. It can be concluded 
generally that a self-similarity of a quasilattice in any dimensions belongs to type I or 
I1 according to whether the relevant transformation acting on the starting higher- 
dimensional lattice is unimodular or not, respectively (for the case of type I self- 
similarity, see Katz and Duneau (1986) and Gahler (1986)). 

7 ( m - l )  diag 
) 
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Another difference between the two types of self-similarity is discussed by Pleasants 
(1984) on the Pleasants’ patterns. 

Every periodic lattice has an infinite variety of superlattices which are similar to 
itself. The inflation in a self-similarity in this sense is not unique because every 
superlattice has several equivalent companions. Thus, self-similarity of a periodic 
lattice is considered to belong to type 11. This view is also consistent with type I1 
self-similarity of a quasilattice, because it is derived from the presence of several 
equivalent sublattices of the starting lattice. On the contrary, type I self-similarity is 
peculiar to a quasilattice. 

Katz and Duneau (1986) claimed that the inflation of the type I self-similarity is 
not unique in some cases. Their claim is based on observation that even if the narrowed 
window T’ W on the inflation is translated in the internal space by an arbitrary vector 
7 under the condition that 17 + T’ W c W, the resulting quasilattice Lo( + - 7, T‘ W) as 
well as Lo(+, T’W)  is similar to the original quasilattice Lo(4 ,  W). In this case, 
however, the centre of the new window 7 + T’ W is shifted by 7 from that of the original 
window W, so that the relative configuration between the two windows is unsymmetrical. 
This causes a lattice point in a local configuration to be retained on the inflation, while 
another one in the same local configuration, except for its orientation, is discarded. 
Such an inflation will be of no physical interest. If we restrict our concern only to the 
symmetrical inflation assumed in this series of papers, the uniqueness of the inflation 
in type I self-similarity is restored. 
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